Так как фирмы производители долот PDC не приводят в паспортных характеристиках вышеуказанные характеристики, необходимо проведение специальных стендовых и промысловых исследований. При пересчете данных с использованием графика, приведенного на рис. 3, необходим анализ подобия конструкций долот и их вооружения.

Список литературы

1. Буровые долота: каталог / Хьюз Кристенсен. – Хьюстон: Хьюз Кристенсен Инкорпоратед, $2005.-45~\mathrm{c}.$

Физико-гидродинамические характеристики вытеснения нефти Чутырско-Киенгопского месторождения

Борхович С.Ю., Трефилова Т.В.

Удмуртский государственный университет, г. Ижевск, Россия **Коломийцев А.В.**

Северо-Кавказский федеральный университет, г. Ставрополь, Россия

Нефтенасыщенный пласт представляет собой огромное скопление поровых каналов и трещин. В связи с этим законы движения флюидов в пласте и их вытеснение из пористой среды определяются не только свойствами пород и жидкостей, но и процессами, протекающими на поверхности нефти и воды с породой.

Неполный объем информации о продуктивном пласте одна из причин недостаточной обоснованности применяемых решений на этапе проектирования методов увеличения нефтеотдачи и, как следствие, получение неудачных результатов при их осуществлении [1-5].

Характеристики вытеснения нефти водой для средних значений проницаемости (по керну) и вязкости продуктивных пластов Чутырско-Киенгопского месторождения представлены в таблице. Коэффициент вытеснения нефти от 0,4 до 0,61 д.е., что соответствует гидрофобным поровым каналам.

На рисунках 1, 2, 3 представлены формы графиков относительных фазовых проницаемостей, рассчитанных как отношение фазовых проницаемостей для воды и нефти к максимальным фазовым проницаемостям по нефти.

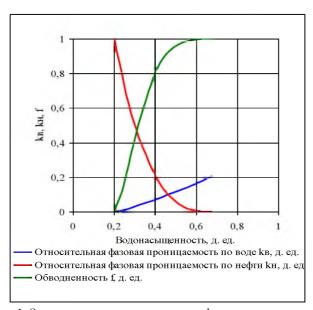


Рисунок 1. Зависимости относительных фазовых проницаемостей для воды, нефти и обводненности продукции от водонасыщенности продуктивных пластов башкирского яруса Киенгопской площади $(K_{np}=0.181~{\rm MKM}^2;~\mu_u=12.83~{\rm MHa}\cdot c)$

Таблица 1 Характеристики вытеснения нефти волой

жарактериетики вытеснения пефти водон										
Объект, продуктивные пласты	Прони- цае- мость, мкм ² *	Вяз- кость нефти, мПа-с	Со- держа- ние свя- занной воды, д.ед.**	Началь- ная нефте- насы- щен- ность, д.ед.***	Коэф- фици- ент оста- точной нефте- насы- щен- ности, д.ед.	Коэф- эффи- фи- циент вытес тес- нения	Относит проница д.ед. ² для воды при оста- точной нефтена-	емость, **** для нефти при оста- точной		
						нефти	сыщен-	водона-		
						, д.ед.	ности	сыщен- ности		
		Viioi	IFOHOMA	плошел				пости		
Киенгопская площадь										
Верейский горизонт	0,053	12,88	0,338	0,662	0,292	0,558	0,0430	0,3681		
Башкирский ярус	0,181	12,83	0,207	0,793	0,324	0,592	0,0606	0,3263		
Визейския ярус	0,847	58,98	0,089	0,911	0,414	0,546	0,0333	0,4399		
Турнейский ярус	0,149	32,6	0,271	0,729	0,358	0,509	0,0393	0,3326		
Рудинский участок										
Турнейский ярус	0,112	32,6	0,291	0,709	0,361	0,490	0,0366	0,3420		
Чутырская площадь										

Верейский горизонт	0,263	9,78	0,259	0,741	0,289	0,610	0,0760	0,3146
Башкирский ярус	0,159	7,45	0,212	0,788	0,312	0,604	0,0730	0,3305
Визейский ярус	0,063	39,20	0,203	0,797	0,454	0,431	0,0216	0,3546
Турнейский ярус****	0,149	32,6	0,271	0,729	0,358	0,509	0,0393	0,3326

Примечание:

- * средневзвешенные по объемам нефтенасыщенных пород значения;
- ** содержание связанной воды определялось по зависимости $K_{\scriptscriptstyle \mathrm{OB}} = f(K_{\scriptscriptstyle \mathrm{\PiD.\Gamma.}});$
 - *** начальная нефтенасыщенность $K_{HH} = 1 K_{OB}$;
- **** относительные фазовые проницаемости, рассчитанные как отношение фазовых проницаемостей к абсолютным проницаемостям.

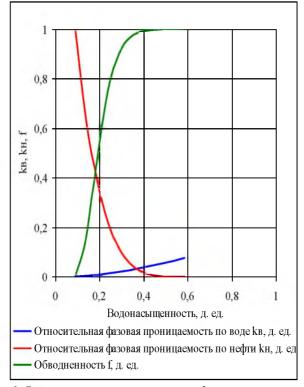


Рисунок 2. Зависимости относительных фазовых проницаемостей для воды, нефти и обводненности продукции от водонасыщенности продуктивных пластов визейского яруса Киенгопской площади $(K_{np} = 0.847 \text{ мкм}^2; \mu_{\!\scriptscriptstyle H} = 58.98 \text{ м}\Pi \text{a-c})$

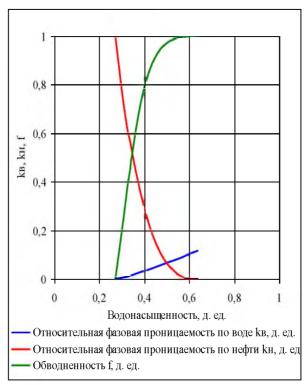


Рисунок 3. Зависимости относительных фазовых проницаемостей для воды, нефти и обводненности продукции от водонасыщенности продуктивных пластов турнейского яруса Киенгопской площади $(K_{np}=0.149~{\rm MkM}^2;~\mu_n=32.6~{\rm MHa~c})$

Анализ зависимостей ОФП для нефти и воды, представленных на рисунках 1, 2, 3 показывает, что точка их пересечения соответствует водонасыщенности, меньшей 50 %. Это указывает на гидрофобную поверхность порового пространства.

Выводы:

- 1. При вытеснении нефти водой гидрофобный характер поверхности порового пространства снижает скорость капиллярной пропитки пористой среды водой и, как следствие, коэффициент вытеснения нефти.
- 2. Коэффициент вытеснения в гидрофильных прослоях в среднем на 12% выше, чем в гидрофобных.

3. Точка равных ОФП для нефти и воды в гидрофильных прослоях соответствует водонасыщенности, в среднем на 17% большей, чем в гидрофобных.

Список литературы

- 1. Андреев А. В. Прогнозирование продуктивности залежей в карбонатных коллекторах с трудноизвлекаемыми запасами / А. В. Андреев, В. Ш. Мухаметшин, Ю. А. Котенев // SOCAR Proceedings. 2016. № 3. С. 40–45.
- 2. Ахметов Р. Т. Оценка коэффициента вытеснения карбонатных коллекторов по данным ГИС / Р.Т.Ахметов, А. В. Андреев, В. Ш. Мухаметшин, А. Н. Пахомкин // Современный технологии в нефтегазовом деле 2016: сборник трудов международной научно-технической конференции, посвященной 60-летию филиала в 2-х т. (Октябрьский, 25 марта 2016 г.) Уфа: Изд-во УГНТУ, 2016. Т.1. С. 99 105.
- 3. Зейгман Ю. В. Перспективы применения многофункциональных жидкостей глушения скважин в карбонатных коллекторах с трудноизвлекаемыми запасами / Ю. В. Зейгман, В. Ш. Мухаметшин, А. Р. Хафизов, С. Б. Харина // SOCAR Proceedings. 2016. С. 33 39.
- 4. Котенев Ю. А. Обоснование циклического воздействия на продуктивные пласты с высоковязкой нефтью / Ю. А. Котенев, Ю. В. Зейгман, В. Ш. Мухаметшин, А. И. Пономарев, Ш. Х. Султанов, А. Р. Хафизов, А.С. Беляева, А. Ю. Котенев // Известия высших учебных заведений. Нефть и газ. -2016. -№ 3. -C.77-84.
- 5. Якупов Р. Ф. Вопросы эффективности разработки низкопродуктивных карбонатных коллекторов на примере Турнейского яруса Туймазинского месторождения / Р.Ф. Якупов, В. Ш. Мухаметшин // Нефтяное хозяйство. $2013. N \cdot 12. C.106 110.$

Особенности осушки природного газа на цеолитах

Булатова П.А.

Северо-Кавказский федеральный университет, г. Ставрополь, Россия

Из всех современных промышленных адсорбентов – активных углей, силикагелей, алюмогелей, цеолитов – последние самые дорогие адсорбенты. В процессах осушки газов они обеспечивают самую низкую точку росы (минус 60 – минус 90°С) при высокой адсорбционной способности, прочны при истирании и контакте с капельной влагой. Достоинствами молекулярных сит при использовании в промышленности являются снижение удельного объема адсорбента, боле низкий перепад давления на слое адсорбента, ис-