Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12258/19241
Title: | Feature importance evaluation method for multi-agent deep reinforcement learning in advanced robotics task allocation |
Authors: | Ryabtsev, S. S. Рябцев, С. С. Gurchinsky, M. M. Гурчинский, М. М. Struchkov, I. V. Стручков, И. В. Petrenko, V. I. Петренко, В. И. Tebueva, F. B. Тебуева, Ф. Б. |
Keywords: | Artificial neural networks;Multi-agent systems;Feature;Multi-agent deep reinforcement learning |
Issue Date: | 2022 |
Publisher: | ALife Robotics Corporation Ltd |
Citation: | Ryabtsev, S., Gurchinsky, M., Struchkov, I., Petrenko, V., Tebueva, F., Makarenko S. Feature importance evaluation method for multi-agent deep reinforcement learning in advanced robotics task allocation // Proceedings of International Conference on Artificial Life and Robotics. - 2022. - Стр.: 695 - 698 |
Series/Report no.: | Proceedings of International Conference on Artificial Life and Robotics |
Abstract: | The need to tackle intelligent tasks using advanced robotics multi-agent systems (MAS) actualize the use of artificial neural networks (ANNs) and multi-agent deep reinforcement learning technology. The article aims to solve the problem of exponential growth of ANN complexity with an increase in the number of agents in the MAS. To solve this problem, we propose an evaluation method for input data features importance. This method allows to optimize the input data feature set to reduce the computational complexity of the ANN inference while providing the same level of performance. |
URI: | http://hdl.handle.net/20.500.12258/19241 |
Appears in Collections: | Статьи, проиндексированные в SCOPUS, WOS |
Files in This Item:
File | Size | Format | |
---|---|---|---|
scopusresults 2096 .pdf Restricted Access | 63.04 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.