Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12258/25580
Title: Estimation of 500 kV power transmission line parameters with PMU
Authors: Kononov, Y. G.
Кононов, Ю. Г.
Zelensky, E. G.
Зеленский, Е. Г.
Rybasova, O. S.
Рыбасова, О. С.
Kostyukov, D. A.
Костюков, Д. А.
Bakaushina, E.
Бакаушина, Е.
Keywords: PMU;Transmission line parameters
Issue Date: 2021
Citation: Kononov, Y., Zelenskii, E., Rybasova, O., Kostyukov, D., Bakaushina, E. Estimation of 500 kV power transmission line parameters with PMU // E3S Web of Conferences. - 2021. - 279, статья № 01014. - DOI: 10.1051/e3sconf/202127901014
Series/Report no.: E3S Web of Conferences
Abstract: This work is devoted to the research of the real-time estimation of 500 kV power transmission lines parameters with PMU based on the solution of the optimization problem of minimizing the root-mean-square deviations of the specific line parameters or the sum of the modules of the correlation coefficients between the specific parameters and the sum of the squares of the voltages or currents measured at the ends of the line. Independent optimization variables are the correction factors of the measuring systems of currents and voltages. Based on an artificially simulated PMU dataset with specified Gaussian noise and systematic errors, it is shown that the use of correlation coefficients in the objective function is more effective than standard deviations. All 5 estimated coefficients turned out to be closer to the reference values. The results of calculations are obtained from the data of real PMUs for an operating 500 kV line with a length of 504.6 km. The deviation of the specific capacitive conductivity from the nominal value is 0.13%, compared with - 0.29% when using the sum of squares of deviations as an objective function.
URI: http://hdl.handle.net/20.500.12258/25580
Appears in Collections:Статьи, проиндексированные в SCOPUS, WOS

Files in This Item:
File SizeFormat 
scopusresults 2787 .pdf
  Restricted Access
135.88 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.