Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChervyakov, N. I.-
dc.contributor.authorЧервяков, Н. И.-
dc.contributor.authorBabenko, M. G.-
dc.contributor.authorБабенко, М. Г.-
dc.contributor.authorDeryabin, M. A.-
dc.contributor.authorДерябин, М. А.-
dc.contributor.authorKucherov, N. N.-
dc.contributor.authorКучеров, Н. Н.-
dc.contributor.authorKuchukova, N. N.-
dc.contributor.authorКучукова, Н. Н.-
dc.identifier.citationChervyakov, N.I., Babenko, M.G., Deryabin, M.A., Kucherov, N.N., Kuchukova, N.N. The EC sequences on points of an elliptic curve realization using neural networks // Advances in Intelligent Systems and Computing. - 2016. - Volume 427. - Pages 147-154ru
dc.description.abstractThis paper shows that pseudorandom number generator based on ECsequence doesn’t satisfy the condition of Knuth k-distribution. A modified pseudorandom number generator on elliptic curve points built in neural network basis is proposed. The proposed generator allows to improve statistical properties of the sequence based on elliptic curve points so that it satisfies the condition of kdistribution i.e. the sequence is pseudorandom. Application of Neural network over a finite ring to arithmetic operations over finite field allows to increase the speed of pseudorandom number generator on elliptic curve points EC-256 by 1,73 times due to parallel structureru
dc.publisherSpringer Verlagru
dc.relation.ispartofseriesAdvances in Intelligent Systems and Computing-
dc.subjectEC sequencesru
dc.subjectElliptic curveru
dc.subjectNeural network of a finite ringru
dc.subjectResidue number system (RNS)ru
dc.titleThe EC sequences on points of an elliptic curve realization using neural networksru
vkr.amountPages 147-154ru
vkr.instИнститут математики и естественных наук-
Appears in Collections:Статьи, проиндексированные в SCOPUS, WOS

Files in This Item:
File Description SizeFormat 
scopusresults 511 .pdf
  Restricted Access
62.98 kBAdobe PDFView/Open
WoS 302 .pdf
  Restricted Access
21.88 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.