Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12258/536
Title: Development of the neural network method for analyzing the literary text from the point of view of genre identification
Authors: Babenko, M. G.
Бабенко, М. Г.
Strashkova, O. K.
Страшкова, О. К.
Babenko, I. A.
Бабенко, И. А.
Keywords: Category;Genre;Neural networks;Semantic analysis
Issue Date: 2017
Publisher: Institute of Electrical and Electronics Engineers Inc.
Citation: Babenko, M.G., Strashkova, O.K., Babenko, I.A. Development of the neural network method for analyzing the literary text from the point of view of genre identification // Proceedings of the 2017 International Conference "Quality Management, Transport and Information Security, Information Technologies", IT and QM and IS 2017. - 2017. - статья № 8085789. - pp. 162-165.
Series/Report no.: Proceedings of the 2017 International Conference "Quality Management, Transport and Information Security, Information Technologies", IT and QM and IS 2017
Abstract: The article studies the issue of identification of literary texts with artificial neural networks. We showed that artificial neural networks for solving the problem of classifying literary texts makes it possible to obtain a true result for determining the category of a text with a probability of 95%. However, determining the genre of a literary text is more difficult and in the worst case it is possible only with a probability of 75%
URI: https://www.scopus.com/record/display.uri?eid=2-s2.0-85040117566&origin=resultslist&sort=plf-f&src=s&nlo=1&nlr=20&nls=afprfnm-t&affilName=nort*+caucas*+fed*+univ*&sid=d5d8a0d301244722be90437f5b553481&sot=afnl&sdt=cl&cluster=scopubyr%2c%222017%22%2ct&sl=53&s=%28AF-ID%28%22North+Caucasus+Federal+University%22+60070541%29%29&relpos=16&citeCnt=0&searchTerm=
https://dspace.ncfu.ru:443/handle/20.500.12258/536
Appears in Collections:Статьи, проиндексированные в SCOPUS, WOS

Files in This Item:
File Description SizeFormat 
scopusresults (80).pdf63.76 kBAdobe PDFThumbnail
View/Open
WoS 48 .pdf80.34 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.